

First-principles study of the binary intermetallics in the Cu-Lu and Cu-Pm systems

Nawel Djenane, Yassine Djaballah*, Aissa Belgacem-Bouzida, Mourad Guezlane

Laboratory of Physical and Chemical of Materials (LEPCM), Physics Department, Faculty of Matter Science, University of Batna 1, Algeria

Corresponding Author Email: yassine.djaballah@univ-batna.dz

https://doi.org/10.18280.ama_a.550404

ABSTRACT

Received: 31 December 2017 Accepted: 25 June 2018

Keywords:

Cu-Lu compounds, Cu-Pm compounds, First principles calculations, Rare earth alloys We present a first principle study of the structural, elastic and energetic properties of the Cu_aX_b (X=Lu, Pm) compounds, within the first principles density functional theory (DFT). The equilibrium volume, lattice constant, enthalpy of formation and the elastic constant are calculated using the full-potential linearized augmented plane-wave [FP-LAPW] method in the generalized gradient approximation (GGA) scheme. The CuLu, Cu₂Lu, Cu₅Lu, CuPm, Cu₂Pm, Cu₄Pm, Cu₅Pm and Cu₆Pm were investigated in their similar Cu-Lanthanide structure prototype compounds observed experimentally. The Cu₇Lu₂, Cu₉Lu₂ and Cu₇Pm₂ intermetallics reported without prototype structure, was also investigated by inspecting several hypothetical structures. The most stable structure for the Cu₇X₂ compounds was found to be the orthorhombic structure in the Ag₇Yb₂ prototype. For the Cu₉Lu₂ compound the two structures studied have a positive enthalpy, implying that it is not a ground state for both tested.

1. INTRODUCTION

Copper is a very common substance that is naturally present in the environment and diffuses into the environment through natural phenomena. It is used enormously, for example in industry and in agriculture; on the other hand promethium Pm and lutetium Lu are counted among lanthanide compounds. The lanthanides alloys are widely used in the industries applications as catalysts, in streetlights, searchlights, and in the high-intensity lighting present in sports stadiums. They form alloys with many other metals, and these alloys exhibit a wide range of physical properties. We did not find an experimental study for the phase diagram of the Cu-Pm and Cu-Lu systems. The only theoretical studies previously proposed for Cu-Pm and Cu-Lu are from Subramanian and Laughlin [1, 2] which proposes a theoretical phase diagram based on the similarity of the binary phase diagrams of Cu-Lanthanide, as the Cu-Ce, Cu-Pr, Cu-Sm and Cu-Nd systems. Hence, they proposed the existence of the compounds CuPm, Cu₂Pm, Cu₄Pm, Cu₅Pm, Cu₆Pm and Cu₇Pm₂. The structure prototype of these compounds is inspired from the Cu-Ce binary system which has been studied by several authors [3-6]. All of these compounds crystallize in the orthorhombic structure except the Cu₅Pm which is hexagonal in Cu₅Ce prototype and the Cu₇Pm₂ which they did not propose a prototype. The prototypes of the other compounds are also distinguished, CuPm and Cu₆Pm formed in FeB and Cu₆Ce prototype respectively; Cu₂Pm to Cu₂Ce as a prototype and the last Cu₄Pm crystallizes in a Cu₄Ce prototype. The Cu-Lu system is similar to Cu-heavy Lanthanide, and its compounds which have been proposed are CuLu, Cu2Lu, Cu5Lu in the prototypes structure form of the CsCl, Cu₂Ce and AuBe₅ respectively, and Cu7Lu2, Cu9Lu2 without prototype. The crystal parameters for these intermediate phases were estimated on the basis of the systematic of crystallographic data in the Cu- Lanthanide systems.

The aim of the present work, based on first-principles calculations, is to investigate the relative stabilities of the different compounds involved in the Cu-Lu and Cu-Pm systems, and predicting a stable structure for the Cu_7X_2 (X=Lu, Pm) compound. Having our calculations performed at 0 K, we will be mainly focusing on the determination of the ground state line of these systems.

2. COMPUTATIONAL DETAILS

We employed for the ground state energy the full potential linearized augmented plane wave [FP-LAPW] based on density functional theory (DFT)] [7], as implemented in WIEN2K code [8, 9]. For structural and elastic properties, the exchange correlation potential was calculated using the generalized gradient approximation (GGA) in the form proposed by Perdew et al. [10]. In order to achieve energy eigenvalues convergence, the wave functions in the interstitial region were expanded in plane waves with a cut off of $K_{max} = 9/Rmt$, where Rmt denotes the smallest atomic sphere radius and K_{max} gives the magnitude of the largest kvector in the plane wave expansion. The k-point meshes for Brillouin zone sampling were constructed using the MonkhorstPack scheme [11]; the (12x12x12) k-points mesh was used for all calculations. The structures of our studied compounds are optimized by calculating the total energy as a function of volume. The results are fitted according to the Murnaghan equation of state [12] to obtain the ground-state properties given by

$$E(V) = E_0 + \frac{B_0}{B'(B'-1)} \left[V \left(\frac{V_0}{V} \right)^{B'} - V_0 \right] + \frac{B_0}{B'} (V - V_0)$$
(1)

where E(V) is the internal energy, V_0 and E_0 are the equilibrium volume and energy, at zero pressure, V is the deformed volume, B_0 is the bulk modulus, and B' is the derivative of the bulk modulus.

The enthalpy of formation is obtained by calculating the difference between the energy of the compound and the energy of its constituents according to the following equation:

$$\Delta H_f(Cu_a X_b) = E_{tot(Cu_a X_b)} - [aE_{Cu} + bE_X]$$
⁽²⁾

where $\Delta H_f(Cu_aX_b)$ is the enthalpy of formation of the compound Cu_aX_b . $E_{tot}(Cu_aX_b)$, E_{cu} and E_X are the ground state energies.

The elastic properties define how a material under stress deforms and then recover and return to its original shape after stress ceases. We used the calculation of the elastic stiffness constant C_{ij} to check the mechanical stability of the Cu_7X_2 compounds. The strain–stress method [13] are used, in which the relaxed unit cell under hydrostatic stress tensor was linearly deformed, then the stress tensor was calculated self-consistently after relaxing forces.

3. RESULTS AND DISCUSSION

3.1 Pure elements: Cu, Lu and Pm

We have evaluated the energies of the pure elements Cu, Lu and Pm in their observed structures at room temperature. The calculated lattice constants are summarized in table 1. We compared our results with the experimental data [14-16] and those obtained by the VASP code [17]. A good agreement has been obtained with the available results from literature.

The promethium Pm has two structures, α (hexagonal) and a β (cubic). Our calculation of the ground state energy indicate that the hexagonal form is the most stable one that's why we used it to calculate the enthalpy of formation

3.2 Cu-Lu system

Only three compounds in the Cu-Lu systems are known: CuLu, Cu₂Lu and Cu₅Lu. Subramanian and Laughlin [18] have estimated phase diagram by systematic considerations of binary Cu-rare-earth systems and knowing the stoichiometry of some intermediate phases. Two intermetallics Cu₉Lu₂ and Cu₇Lu₂ were assumed to exist, for analogous phases are present in the Cu-RE (RE = Gd, Dy and Er) systems.

Iandelli and Palenzona [19] reported the cubic AuBe₅-type structure for Cu₅Lu. Storm and Benson [20] reported the formation of Cu₂Lu with the orthorhombic CeCu₂-type structure, and Dwight [21] reported the cubic CsCl-type structure for CuLu compound.

Figure 1. Enthalpies of formation of Cu-Lu intermetallics

By minimizing the total energies, we obtained the equilibrium lattice constants of these compounds, and the results are summarized in table 2. The experimental results are reasonably reproduced with differences less than 1%. Calculated enthalpies of formation are presented in table 3 and figure 1 compared with the experimental data [22, 23], where a good agreement is obtained with the experimental uncertainties.

The existence of the intermetallic Cu_7Lu_2 and Cu_9Lu_2 has not confirmed in any work. There is no structural data of these compounds. To calculate the enthalpy of formation of this supposed compound, and since there are no structural data in literature, we tried out several structures. We have found six crystal structures for the A_7B_2 compound and two crystal structures for the A_9B_2 . The calculated enthalpies of formation of the Cu_9Lu_2 compound in the two structures studied (Pd₉Si₂ type, space group Pnma and Al₉Co₂ type, space group P12₁/c1) performed a positive enthalpy, which mean that it is not a ground state for both tested.

Table 1. Calculated lattice parameters and bulk modulus of the pure elements Cu, Lu and Pm

alamant	Pearson	Space	Lattices Parameters (nm)				B ₀ (GPa)	
element	Symbol	group		This Work	VASP ^(a)	Exp.	(This Work)	
Cu	cF4	Fm-3m	а	0.363	0.362	0.363 ^(b)	139.37	
Lu	hP2	P63/mmc	а	0.349	0.351	0.350 ^(c)	47.11	
			b	0.349	0.351	0.350		
			c	0.552	0.547	0.556		
			а	0.314	0.367	0.365 ^(d)		
αPm	hP4	P63/mmc	b	0.314	0.367	0.365	36.33	
			c	1.011	1.606	1.165		
(a) Ref. [17]		(b) Ref. [14]		(c) Ref. [15]		(d) Ref. [16]	

Table 2. Calculated and experimental lattice parameters and bulk modulus of Cu-Lu intermetallics

Phases	Pearson Symbol	Space group	La	ttice Paramet	B0 (GPa) This work	
				This work	Exp.	
Cu5Lu	cF24	$F\overline{4}3m$	а	0.7003	0.6970 ^(a)	115.14
Cu ₂ Lu	oI12	Imma	а	0.429	0.424 ^(b)	
			b	0.666	0.663	93.20
			с	0.726	0.722	
CuLu	cP2	Pm3m	a	0.340	0.339 ^(c)	78.09
(a) Ref. [19]		(b) Ref. [20]	(c) Ref. [21]			

 Table 3. Enthalpies of formation of Cu-Lu intermetallics (kJ/mol)

Compound	This Work	Exp. [22, 23]
Cu5Lu	-18.70	-18.8±1.9
Cu ₂ Lu	-27.18	-21.7±5.3
CuLu	-27.04	-27.6±2.3

For the compound Cu_7Lu_2 , we calculated the equations of state of the six proposed structures (Figure 2). As we can see the orthorhombic structure (space group Cmcm) is the stable phase. Lattice parameters and enthalpies of formation are listed in table 4. The lower enthalpy is obtained with orthorhombic structure. The results show that the enthalpy of formation of this structure breaks the convex hull (Figure 1). The different crystalline structures proposed for the Cu_7Lu_2 are shown in figure 3.

Figure 2. Calculated total energies as a function of volume of the suspected structures for the Cu₇Lu₂ compound

Table 4. Enthalpies of formation and bulk modulus of Cu₇Lu₂ in different suspected structures

Prototype	Pearson Symbol	Space	Lattice Promettres (nm)	H ^{for} (k I/mol)	B ₀ (GPa)
	Symbol	group	a 0.534	(K5/1101)	(01 a)
Al ₇ Th ₂	oP18	Pbam	b 1.044	-15.33	101.89
			c 0.503		
			a 0.492		
Ni ₇ Zr ₂	mC36	C2/m	b 0.862	-18.07	108.49
			c 1.276		
			a 0.853		
Ag ₇ Yb ₂	oS36	Cmcm	b 0.497	-23.45	107.60
-			c 1.267		
			a 0.921		
Ge ₂ Li ₇	oC36	Cmmm	b 1.316	+13.80	90.97
			c 0.461		
Sb ₂ Tl ₇	cI54	Im-3m	a 0.950	+12.63	89.65
Co Ni	hD26	D6 /mm a	a 0.503	15 60	100.24
Ce21N17	11230	PO3/MMC	c 2.497	-13.09	109.24

To verify the mechanical stability of this compound, we calculated its elastic stiffness constants and bulk modulus B_H (Table 5), and we checked them with all stability conditions for orthorhombic structures given by Wu et al. [24]:

$$\begin{cases} C_{11} > 0, \quad C_{22} > 0, C_{33} > 0, \\ C_{44} > 0, \quad C_{55} > 0, \quad C_{66} > 0 \\ [C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0 \\ (C_{11} + C_{22} - 2C_{12}) > 0 \\ (C_{11} + C_{33} - 2C_{13}) > 0 \\ (C_{22} + C_{33} - 2C_{23}) > 0 \end{cases}$$
(3)

 $B_{\rm H}$ is the bulk modulus given according to the Hill approximation [13] as:

$$B_H = \frac{1}{2} \left(B_{\text{Reuss}} + B_{\text{Voigt}} \right) \tag{4}$$

where B_{Reuss} and B_{Voigt} are the bulk modulus given by Reuss [25] and Voigt [26] approximations respectively.

The obtained values satisfy all this stability conditions, which confirm its mechanical orthorhombic structure stability, and the bulk modulus B_H is in good agreement with the one calculated by the Murnaghan equation.

To the best of our knowledge, there are no experimental and other theoretical data in literature for the elastic constants (C_{ij}) and bulk modulus of this compound for comparison, so we consider the present results as prediction study which still awaits an experimental confirmation.

Cubic

monoclinic

Orthorhombic (Cmmm)

Hexagonal

Orthorhombic (Pbam)

Orthorhombic (Cmcm)

Figure 3. Schematic representation of the six proposed structures for the Cu₇Lu₂ compound

 $\label{eq:table_table_table_table} \begin{array}{c} \textbf{Table 5. Elastic stiffness constants and bulk modulus of the} \\ Cu_7Lu_2 \text{ and } Cu_7Pm_2 \text{ compound} \end{array}$

	Cu7Lu2	Cu7Pm2
C11	187.85	164.04
C ₁₂	78.02	52.54
C13	68.40	49.71
C ₂₂	177.23	142.24
C ₂₃	76.59	42.91
C33	174.17	117.15
C_{44}	42.84	30.69
C55	37.24	46.28
C ₆₆	49.76	46.95
B_H	109.40	78.32
B_0^{Murn}	107.60	92.61

3.3 Cu-Pm system

This system has not been studied experimentally till now. By comparison with other Cu-rare-earth systems and interpolating the data which could be expected for the Cu-Pm system, Subramanian and Laughlin [1] have proposed a phase diagram with six compounds: Cu₆Pm, Cu₅Pm, Cu₄Pm, Cu₂Pm CuPm and Cu₇Pm₂.

Lattice parameters for these intermetallics, except Cu_7Pm_2 , were estimated by Subramanian and Laughlin [1] on the basis of the systematic of crystallographic data in the Cu lanthanide systems. We have not found any information for the Cu_7Pm_2 compound.

Lattice parameters and enthalpies of formation of the five known compounds obtained from first principles calculations, are reported in table 6 and figure 4. As we can see the Cu_4Pm has a positive enthalpy of formation, so it's impossible to form this compound. While for the compound CuPm which is not in the ground state, it is at least no stable at 0 K.

For the Cu₇Pm₂, since we have not found any information concerning its structure, six crystal structures for the A_7B_2 compound like the Cu₇Lu₂ intermetallics are calculated. The equations of state of the six structures are shown in figure 5, lattice parameters and enthalpies of formation are presented in table 7. The lower enthalpy is obtained with orthorhombic structure (space group Cmcm). The results show that even with this structure the calculated enthalpy of formation does not breaks the convex hull (Figure 4).

Lattice Pramettres (nm) Pearson Space Hfor (KJ/mol) Phases B₀(GPa) Symbol This work Estim. [1] group 0.804 0.807 а 0.506 0.505 Cu₆Pm oP28 Pnma b 8.35 103.30 1.007 1.008 с 0.510 0.509 а Cu₅Pm hP6 P6/mmm -8.70 100.89 0.407 0.410 с а 0.485 Cu₄Pm oP20 Pnma b 0.470 +13.0985.68 с 1.386 0.437 0.432 а Cu₂Pm oI12 Imma b 0.689 0.696 -11.63 72.99 с 0.729 0.704 0.722 а 0.715 Pnma 0.450 CuPm oP8 -4.92 50.21 b 0.454 0.553 0.548 с

Table 6. Lattice parameters, enthalpies of formation and bulk modulus of Cu-Pm intermetallics

Figure 4. Enthalpies of formation of Cu-Pm intermetallics

Table 7. Lattice parameters, enthalpies of formation and bulk modulus of Cu₇Pm₂ in different suspected structures

Prototype	Pearson Symbol	Space group	Lattice Parameters (nm)		H ^{for} (KJ/mol)	B ₀ (GPa)
Al ₇ Th ₂	oP18	Pbam	a b c	0.5417 1.0587 0.5100	-2.44	85.77
Ni7Zr2	mC36	C2/m	a b c	0.4992 0.8750 1.2956	-1.60	93.15
Ag7Yb2	hP18	Cmcm	a b c	0.8663 0.5049 1.2863	-7.74	92.61
Ge ₂ Li ₇	oC36	Cmmm	a b c	0.9326 1.3334 0.4673	+20.75	84.21
Sb ₂ Tl ₇	cI54	Im-3m	a	0.9646	+32.41	74.17
Ce ₂ Ni ₇	hP36	P 63/mm c	a c	0.5094 2.5281	-3.9618	91.22

We have also calculated the elastic stiffness constants for this structure (Table 5). The obtained values satisfy all stability conditions (Eq. 3). So the stability of this compound at finite temperature may be explained by entropic effects that are related to vibrational state.

4. CONCLUSIONS

Through first-principles local density functional calculations, we have investigated the ground state line of the Cu-Lu and Cu-Pm systems. We have calculated the enthalpies of formation of eight compounds which there structure are known, and three suspect intermetallics (Cu7Lu2, Cu₉Lu₂ and Cu₇Pm₂). The established ground state shows that: (i) the compounds CuLu, Cu₂Lu, Cu₅Lu and Cu₇Lu₂ are ground state; (ii) the Cu₇Pm₂ is not stable at 0K but may be stable at finite temperature since its mechanically stable in the orthorhombic (Cmcm) structure; (iii) the compounds Cu₉Lu₂, Cu₄Pm and CuPm are not stable at 0 K. The current results suggest that further experimental investigation is needed for the Cu-Lu and Cu-Pm systems

REFERENCES

[1] Subramanian PR, Laughlin D. (1988). The Cu-Pm

(copper-promethium) system. Bulletin of Alloy Phase Diagrams 9: 369-373.

- [2] Subramanian PR, Laughlin D. (1988). The copper-rare earth systems. Bulletin of Alloy Phase Diagrams 9: 316-321.
- [3] Zhou H, Tang C, Tong M, Gu Z, Yao Q, Rao G. (2012). Experimental investigation of the Ce–Cu phase diagram. Journal of Alloys and Compounds 511(1): 262-267. https://doi.org/10.1016/j.jallcom. 2011.09.054
- [4] Shilkin S, Volka L, Fokin V. (1994). Interaction of intermetallic compounds of the composition. Russian Journal of Inorganic Chemistry 39: 183-186.
- [5] Trump R, Thierfeldt S, Loewenhaupt M, Chattopadhyay T. (1991). Magnetic structure of the Kondo lattice compound CeCu₂. Journal of Applied Physics 69: 4699-4701. http://dx.doi.org/10.1063/1.348277
- [6] Kim S, Buyers W, Lin H, Bauer E. (1991). Structure of the heavy electron compounds $Ce(Cu_x Al_{1-x})_5$ and $Ce(Cu_xGa_{1-x})_5, [0.6 \le x \le 0.8]$. Zeitschrift für Physik B Condensed Matter 84: 201-203. https://doi.org/10.1007/BF01313537
- Hohenberg P, Kohn W. (1964). Inhomogeneous electron gas. Physical Review 136: B864-B871. http://dx.doi.org/10.1103/PhysRev.136.B864
- [8] Blaha P, Schwarz K, Madsen KHG, Kvasnicka D, Luitz J. (2012). WIEN2k an augmented plane wave + local orbitals program for calculating crystal properties.

Vienna/Austria, Vienna University of Technology.

- Schwarz K, Blaha P. (2003). Solid state calculations using WIEN2k. Computational Materials Science 28: 259-273. http://dx.doi.org/10.1016/S0927-0256(03)00112-5
- Perdew JP, Burke K, Wang Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B 54: 16533-16539. http://dx.doi.org/10.1103/ PhysRevB.54.16533
- [11] Monkhorst HJ, Pack JD. (1976). Special points for Brillouin-zone integrations. Physical Review B 13: 5188-5192.

http://dx.doi.org/10.1103/PhysRevB.13.5188

- [12] Murnaghan FD. (1944). A modern presentation of quaternions. Proceedings of the Royal Irish Academy Section A: Mathematical and Physical Sciences 50: 104-112.
- [13] Hill R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A 65(5): 349-354. http://dx.doi.org/10.1088/0370-1298/65/5/307
- [14] Demchyna R, Chykhrij S, Kuz'ma YB. (2002). Y–Cu–P system. Journal of Alloys and Compounds 345: 170-174. http://dx.doi.org/10.1016/S0925-8388(02)00432-2
- [15] Daou J, Bonnet J. (1974). A new behaviour of the interstitial element H or D in solution in rare-earth metal. Journal of Physics and Chemistry of Solids 35: 59-65. http://dx.doi.org/10.1016/0022-3697(74)900 1 1-0
- [16] Beaudry B, Gschneidner K. (1978). Preparation and basic properties of the rare earth metals. Handbook on the Physics and Chemistry of Rare Earths 1: 173-232.
- [17] Wang Y, Curtarolo S, Jiang C, Arroyave R, Wang T, Ceder G, et al. (2004). Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28: 79-90.

http://dx.doi.org/10.1016/j.calphad.2004.05.002

- [18] Subramanian PR, Laughlin D. (1988). The Cu-Lu (copper-lutetium) system. Bulletin of AlloyPhase Diagrams 9: 358-418.
- [19] Iandelli A, Palenzona A. (1971). The ytterbium-copper system. Journal of the Less Common Metals 25: 333-335.

- [20] Storm A, Benson K. (1963). Lanthanide–copper intermetallic compounds having the CeCu₂ and AlB₂ structure. Acta Crystallographica 16: 701-702. https://doi:10.1107/S0365110X6300181X
- [21] Dwight A. (1959). CsCl-type equiatomic phases in binary alloys of transition elements. Transactions of the American Institute of Mining and Metallurgical Engineers 215: 283-286.
- [22] Fitzner K, Kleppa O. (1997). Thermochemistry of binary alloys of transition metals: The systems Me-Gd, Me-Ho, and Me-Lu (Me= Cu, Ag, and Au). Metallurgical and Materials Transactions A 28: 187-190. https://doi.org/10.1007/s11661-997-0094-6
- [23] Meschel S, Kleppa O. (2005). Thermochemistry of some binary alloys of copper with the lanthanide metals by high-temperature direct synthesis calorimetry. Journal of Alloys and Compounds 388: 91-97. http://dx.doi.org/10.1016/j.jallcom.2004.08.062
- [24] Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J. (2007). Crystal structures and elastic properties of superhard IrN₂ and IrN₃ from first principles. Physical Review B 76: 054115. https://doi.org/10.1103/ Phys RevB.76.054115
- [25] Reuss A. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z Angew Math Mech 9: 49-58.
- [26] Voigt W. (1928). Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). Edited by bg Teubner and Jw Edwards, Leipzig Berlin. Ann Arbor, Mich.

NOMENCLATURE

\mathbf{V}_0	equilibrium volume
E_0	internal energy
Etot	Total energy
\mathbf{B}_0	bulk modulus
B'	derivative of the bulk modulus
ΔH^{f}	enthalpy of formation of the compound
C_{ij}	Elastic stiffness constants